Brandeis_logo_seal_blue_digital.png
  • Black Twitter Icon

© 2019 Sengupta Lab.

Created by Lauren Tereshko with Wix.com

Recent Publications

Modulation of sensory behavior and food choice by an enteric bacteria-produced neurotransmitter

O'Donnell, MP, Fox, BW, Chao, PH, Schroeder, FC, Sengupta, P.  

BioRxiv, 2019.

The C. elegans Tubby homolog dynamically modulates olfactory cilia membrane morphogenesis and phospholipid composition.

DiTirro, D, Philbrook, A, Rubino, K, & Sengupta, P.  

eLife, 2019.

How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli.

Goodman MB, Sengupta P.

Genetics. 2019 May;212(1):25-51. doi: 10.1534/genetics.118.300241.

A CCRK and a MAK Kinase Modulate Cilia Branching and Length via Regulation of Axonemal Microtubule Dynamics in Caenorhabditis elegans.

Maurya AK, Rogers T, Sengupta P.

Curr Biol. 2019 Apr 22;29(8):1286-1300.e4. doi: 10.1016/j.cub.2019.02.062. Epub 2019 Apr 4.

Thermosensation: Human Parasitic Nematodes Use Heat to Hunt Hosts.

O'Donnell MP, Khan M, Sengupta P.

Curr Biol. 2018 Jul 23;28(14):R795-R798. doi: 10.1016/j.cub.2018.05.082.

The extraordinary AFD thermosensor of C. elegans.

Goodman MB, Sengupta P.

Pflugers Arch. 2018 May;470(5):839-849. doi: 10.1007/s00424-017-2089-5. Epub 2017 Dec 8. Review.

Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans.

O'Donnell MP, Chao PH, Kammenga JE, Sengupta P.

PLoS Genet. 2018 Feb 7;14(2):e1007213. doi: 10.1371/journal.pgen.1007213. eCollection 2018 Feb.

Primary Cilium Formation and Ciliary Protein Trafficking Is Regulated by the Atypical MAP Kinase MAPK15 in Caenorhabditis elegans and Human Cells.

Kazatskaya A, Kuhns S, Lambacher NJ, Kennedy JE, Brear AG, McManus GJ, Sengupta P, Blacque OE.

Genetics. 2017 Dec;207(4):1423-1440. doi: 10.1534/genetics.117.300383. Epub 2017 Oct 11.

Early Pheromone Experience Modifies a Synaptic Activity to Influence Adult Pheromone Responses of C. elegans.

Hong M, Ryu L, Ow MC, Kim J, Je AR, Chinta S, Huh YH, Lee KJ, Butcher RA, Choi H, Sengupta P, Hall SE, Kim K.

Curr Biol. 2017 Oct 23;27(20):3168-3177.e3. doi: 10.1016/j.cub.2017.08.068. Epub 2017 Oct 5.

The rise and fall of basal bodies in the nematode Caenorhabditis elegans.

Nechipurenko IV, Sengupta P.

Cilia. 2017 Jul 26;6:9. doi: 10.1186/s13630-017-0053-9. eCollection 2017. Review.

 

Centriolar remodeling underlies basal body maturation during ciliogenesis in Caenorhabditis elegans.

Nechipurenko IV, Berciu C, Sengupta P, Nicastro D.

Elife. 2017 Apr 15;6. pii: e25686. doi: 10.7554/eLife.25686.

Cilia and sensory signaling: The journey from "animalcules" to human disease.

Sengupta P.

PLoS Biol. 2017 Apr 14;15(4):e2002240. doi: 10.1371/journal.pbio.2002240. eCollection 2017 Apr.

Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging.

Cornils A, Maurya AK, Tereshko L, Kennedy J, Brear AG, Prahlad V, Blacque OE, Sengupta P.

PLoS Genet. 2016 Dec 1;12(12):e1006325. doi: 10.1371/journal.pgen.1006325. eCollection 2016 Dec.

A Conserved Role for Girdin in Basal Body Positioning and Ciliogenesis.

Nechipurenko IV, Olivier-Mason A, Kazatskaya A, Kennedy J, McLachlan IG, Heiman MG, Blacque OE, Sengupta P.

Dev Cell. 2016 Sep 12;38(5):493-506. doi: 10.1016/j.devcel.2016.07.013.

Developmental programming modulates olfactory behavior in C. elegans via endogenous RNAi pathways.

Sims JR, Ow MC, Nishiguchi MA, Kim K, Sengupta P, Hall SE.

Elife. 2016 Jun 28;5. pii: e11642. doi: 10.7554/eLife.11642.

Receptor-type Guanylyl Cyclases Confer Thermosensory Responses in C. elegans.

Takeishi A, Yu YV, Hapiak VM, Bell HW, O'Leary T, Sengupta P.

Neuron. 2016 Apr 20;90(2):235-44. doi: 10.1016/j.neuron.2016.03.002. Epub 2016 Mar 31.

A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans.

Neal SJ, Park J, DiTirro D, Yoon J, Shibuya M, Choi W, Schroeder FC, Butcher RA, Kim K, Sengupta P.

G3 (Bethesda). 2016 May 3;6(5):1475-87. doi: 10.1534/g3.115.026450.

Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroendocrine signaling.

Neal SJ, Takeishi A, O'Donnell MP, Park J, Hong M, Butcher RA, Kim K, Sengupta P.

Elife. 2015 Sep 3;4. pii: e10110. doi: 10.7554/eLife.10110. Erratum in: Elife. 2015;4:e11547.

The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance.

Schild LC, Zbinden L, Bell HW, Yu YV, Sengupta P, Goodman MB, Glauser DA.

Neuron. 2014 Dec 3;84(5):983-96. doi: 10.1016/j.neuron.2014.10.039. Epub 2014 Nov 20.

CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron.

Yu YV, Bell HW, Glauser D, Van Hooser SD, Goodman MB, Sengupta P.

Neuron. 2014 Dec 3;84(5):919-926. doi: 10.1016/j.neuron.2014.10.046. Epub 2014 Nov 20.

Sex, age, and hunger regulate behavioral prioritization through dynamic modulation of chemoreceptor expression.

Ryan DA, Miller RM, Lee K, Neal SJ, Fagan KA, Sengupta P, Portman DS.

Curr Biol. 2014 Nov 3;24(21):2509-17. doi: 10.1016/j.cub.2014.09.032. Epub 2014 Oct 16.

New insights into an old organelle: meeting report on biology of cilia and flagella.

Sengupta P, Barr MM.

Traffic. 2014 Jun;15(6):717-26. doi: 10.1111/tra.12166. Epub 2014 Mar 29.

Diverse cell type-specific mechanisms localize G protein-coupled receptors to Caenorhabditis elegans sensory cilia.

Brear AG, Yoon J, Wojtyniak M, Sengupta P.

Genetics. 2014 Jun;197(2):667-84. doi: 10.1534/genetics.114.161349. Epub 2014 Mar 18.

A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans.

Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D.

Elife. 2014 Mar 25;3:e01948. doi: 10.7554/eLife.01948.

Thermotaxis navigation behavior.

Goodman MB, Klein M, Lasse S, Luo L, Mori I, Samuel A, Sengupta P, Wang D.

WormBook. 2014 Feb 20:1-10. doi: 10.1895/wormbook.1.168.1. Review.